

COAST

JOURNAL OF THE FACULTY OF SCIENCE

Coast, J. Fac. Sci. 2 (2): 505 - 513

ISOLATION AND SCREENING OF ANTIBIOTIC PRODUCING BACILLUS SPECIES FROM SOIL SAMPLES IN OKITIPUPA, NIGERIA

*1.3 Adeoye, T., Folorunso, V. T., Banjo, A. O., Akinlolu, M. A., Akintomide, R. A., ¹Adeleke, B. S., ³Bankole, S. A. and ¹Teniola, O. D.

¹Department of Biological Sciences, Ondo State University of Science and Technology, Okitipupa, Nigeria

²Department of Microbiology, Adekunle Ajasin University of Science and Technology, Akungba-Akoko, Ondo State, Nigeria.

³Department of Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria. *Corresponding author's email: tayo_adeoye@yahoo.com

Abstract

This study was carried out to isolate soil Bacillus species with antibiotic production features and determine their antibiotic sensitivity pattern around the Olusegun Agagu University of Science and Technology (OAUSTECH), Okitipupa, Nigeria. The antibiotic sensitivity test was carried out using Agar diffusion method. The test microorganisms were Streptococcus pyogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae from the Microbiology Laboratory of the University. Bacillus isolates were able to produce large inhibition zones, they were characterized and identified based on their colonial morphology and biochemical test. The isolates identified are Bacillus subtilis, B. licheniformis, B. pumilus, B. megaterium and B. sphaericus. Out of the total 60 Bacillus species screened, 50% of the isolates demonstrated no antibiotic sensitivity and with 0.0 mm inhibition zone, 26.7% of the population exhibited slight inhibitions of between 1.0 to 5.0 mm clear zones, 15% showed average of between 5.0 to 15 mm zone of inhibition, while 8.3% exerted high antibiotic sensitivity of 15.0 to 27.0 mm wide zones of inhibition respectively. The varied antimicrobial activity exhibited by the isolated microorganisms on the test microorganisms demonstrated the potentials of the Bacillus isolates as antibiotics or antimicrobial sources. Bacillus subtilis and B. licheniformis showed very large activities against three each of the five test microorganisms with activities against both Gram positive and Gram-negative bacteria. Bacillus subtilis G8 isolates inhibit Streptococcus pyrogenes, E. coli and K. pneumoniae. It inhibits Streptococcus pyrogenes with up to 27 mm zone of inhibition. Future studies are required to further confirm and characterized the antibiotic feature of the antimicrobials produced. Bacillus species isolates have demonstrated their potentials as a possible source of antibiotics in the treatment of microbial human infections. Future studies are required to further confirm and characterize the antibiotic feature of the antimicrobials produced.

Keywords: Antibiotic, *Bacillus* species, test microorganisms, pathogenic bacteria, screening, Soil.

Introduction

Soil is the outer loose material of the earth crust. It is regarded as a three-phase system consisting of solids, liquids and gases that are dispersed to form a heterogeneous matrix (Needelman, 2013). On the whole the soil is composed of five major components which are minerals, water, organic matter, air and living organisms (DeGomez et al., 2019). The various components of the soil environment constantly change and their constituents are not the same in all soils but vary with locality (Needelman, 2013). Living portion of the soil body includes small animals and microorganisms but it is generally considered that its microorganisms that plays the most important role in the release of nutrients and carbon dioxide for plant growth (Tapia-Torres et al., 2016, Jacoby et al., 2017). Soil bacteria can be very diverse, including rods (bacilli), cocci (spherical), spirilla (spirals), etc.

Bacillus species are one of the major groups of soil bacterial population and are very widely distributed (Bhagabati et al, 2004). The number and type of bacteria present in a particular soil would be greatly influenced by geographical location, soil temperature, soil type, soil pH, organic matter content, cultivation, aeration and moisture content (Davies and Williams, 1999). Antibiotics are one of the most important commercially exploited secondary metabolites produced by the bacteria and employed in a wide range of applications (Nester et al., 2009). The British scientist Alexander Fleming was credited with being first to notice that another microorganism could inhibit bacteria growth in 1928 (Tan and Tatsumura, 2015). He noticed that the growth of Staphylococcus aureus was inhibited by a mold (fungus) that contaminated his plate. The mold was later identified as Penicillium notatum and the antibiotic isolated later was named penicillin (Nester et al., 2009). Several microorganisms abound in nature having potential to produce different classes of antibiotics. Bacillus species produce many antibiotics such as polymyxin, colistin, circulin, bacitracin, pumulin and gramicidin from different species which are active against Gram positive bacteria such as staphylococci, streptococci, corynebacteria (Amin, et al., 2012). Streptomyces species produce antibiotic like callus tetracycline, chloramphenicol, vancomycin, gentamycin which are active against Gram negative bacteria and Lactobacillus species produce antibiotic like nisin which is produce by Lactobacillus lactis (Waites et al., 2008)

Bacillus is a rod-shaped bacterium found at different locations. Bacillus species are one of the major groups of soil bacterial population and are very widely distributed (Bhagabati et al.,2004).

Some of the Bacillus species reported to be producing antibiotics are B. subtilis, B. polymyxa, B. brevis, B. licheniformis, B. circulans and B. cereus (Caulier et al., 2019). Polypeptide antibiotics produced by Bacillus and useful in medical treatments are Bacitracin, gramicidin S, polymycin and tyrotricidin (Morikawa et al., 1992; Perez et al., 1992; Drablos et al., 1999). Antibiotics produced by the Bacillus species are more effective against Gram-positive bacteria; however, the production of large spectrum and anti-fungal antibiotics that are effective against Gram-negative bacteria is relatively less (Morikawa et al., 1992; Perez et al., 1993; Eltem and Ucar, 1998). The Bacillus species have a wide range of antimicrobial activities since they are used as antifungal agents (Milner et al., 1995), antiviral agents (Steller et al., 1999) anti-ameobocytic agents (Galvez et al., 1994) and anti-mycoplasma agents (Peypoux et al., 1999).

This study therefore aimed at investigating the antimicrobial activity of *Bacillus* species isolated from the southern part of Nigerian soil against some pathogens and other test bacteria. It is hoped that this study will lead to the discovery of novel antibiotics from our environment with potential to control the now very prevalent antibiotic multi resistant microorganisms.

Materials and method Collection and preparation of soil samples

Soil Samples were collected from different locations within the campus of Olusegun Agagu University of Science and Technology (OAUSTECH), Okitipupa, Nigeria. The locations were namely, stagnant water behind OAUSTECH bakery, OAUSTECH farm nursery, OAUSTECH botanical garden, earthen pond in the fishery section, poultry section of the farm, rhizosphere and the dumping site soil at the school. Soil samples of 4.0 g each were collected from the selected locations using sterilized spatula. The samples were taken from 6-12 cm soil depth into sterile plastic bags which were tightly closed immediately after collection and transported aseptically to the microbiology laboratory of the University. Analyses were carried out within 8 h of collection.

Collection of test microorganisms

The test microorganisms used in this study are *Pseudomonas aeruginosa*, *Escherichia coli*, *Streptococcus pyogenes*, *Staphylococcus aureus* and *Klebsiella pneumomiae*. The test isolates were collected on agar slants from Microbiology laboratory, Olusegun Agagu University of Science and Technology, Okitipupa. Ondo State.

Isolation and identification of *Bacillus* species

The method of Collins *et al.* (1989) was used for the isolation of soil *Bacillus* species. Ten grams of soil sample were diluted in 100 ml of physiological saline

solution (0.85% NaCl) in a conical flask and heated at 60° C for 60 mins. in a water bath to destroy vegetative forms of the microbes. The samples were then shaken in an orbital shaker at 200 rpm for 30 mins. and then allowed to settle. From each solution, 1 ml was transferred aseptically to a test tube containing 9 ml of sterile physiological saline and mixed well to make a dilution of 10 1. Serial dilutions were continued up to 10 for each soil sample. Aliquots of 1 ml each from the appropriate dilutions were inoculated on Tryptic Soy Agar (Oxoid) plates incubated at 30° C for 24-48 h. After incubation, the cultured plates were observed for physical appearance of the colonies. The physical observations include appearance, shape, elevation, consistency and pigment colourations. The isolates were also evaluated using biochemical analyses to confirm the isolates identities (Collins et al., 1995).

Cultivation of test organisms for antimicrobial screening

The test organisms; Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pyogenes, Klebsiella pneumonia, and Escherichia coli, obtained from the Microbiology. Laboratory were transferred from Agar slants onto freshly prepared Nutrient agar plates using streaking plate method and the plate was incubated at 37°C for 24 hours. Distinct colonies were isolated and sub-cultured on a Nutrient Agar and kept at 4°C before the plates were used for identification purposes.

Antibiotic susceptibility testing of target bacteria by disc diffusion method

The test organisms were subjected to antibiotic susceptibility test using the disk diffusion method as originally described by Baueet *et al.* (1996). All bacteria were cultured on Tryptic Soy Broth (TSB) medium and incubated at the appropriate

temperature for 24 h. Nutrient Agar medium (10 ml) as poured into each sterile Petri dish (100 mm diameter) and allowed to solidify. Five (5) sterile swab was used to pick the test organisms (Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pyogenes, Klebsiella pneumonia, and Escherichia coli) and each organism was spread uniformly on 5 Petri dishes respectively. Multiple disk (Whatman no. 1 filter) was soaked with Tryptic Soy Broth (TSB) containing the "Target bacteria" and was placed on the Petri dish aseptically with the aid of sterile forceps and the procedure was repeated for the remaining Bacillus isolates. The petri dishes were then incubated at 37 °C for 24 hours in an inverted position. Diameters of zones of inhibition around each antibiotic disc were measured and recorded in millimeters. The isolates that showed large zones of inhibition were chosen and further tests were carried out on them.

Micromorphological and Biochemical test

Important biochemical and morphological tests and observations (Collins et al. 1989) were carried out as indicated in the result. Some of the tests carried out included Gram staining, catalase, motility test using tube method, spore staining, oxidase, Indole, lactose fermentation. The tests were carried out as a confirmation of the microbial identity of the test microorganisms as supplied and the Bacillus isolates.

Results

The total *Bacillus* population counts of the soil samples later used for the screening of antibiotic *Bacillus* producers during this research were shown in Table 1. The results of the microbial analysis reveals that the bacterial loads each soil varied with the count bacterial from the

Rhizosphere zone (4.40 x 10⁶ Cfu/g), while the soil sample from the poultry has the lowest microbial load (8.60 x 10 ⁵ Cfu/g). Most of the other soil samples have Bacillus population of between 1.60 x 10⁶ and 3.80 x 10⁶ Cfu/g. The test microorganisms (Pseudomonas aeruginosa, Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus and Klebsiella pneumoniae) were confirmed using basic morphological and biochemical analyses as shown in Table 2. Sixty Bacillus species were obtained from soil samples collected from OAUSTECH campus and were screened for antimicrobial activity. Out of the sixty isolates, thirty isolates (50%) did not produce no zones of inhibition, sixteen isolates (26.7%) produced little zones of inhibition of mean 3.36 mm with ranges between 1 and 5 mm. Nine isolates (15%) produced inhibition

The five *Bacillus* species that shows large inhibition zones were identified as *Bacillus* subtilis (G8), *Bacillus* pumilus (S4), *Bacillus* licheniformis (S5), *Bacillus* megaterium (S1), *Bacillus* sphaericus (EP1) (Table 4).

zones between of 5-15 mm and average

inhibition zone of 12 mm. The total of five

isolates (8.3%) produced the largest

inhibition zones with a mean value of 18.8

mm ranging from 15 to 27 mm (Table 3).

The Photographic image of Bacillus sphaericus EP1 inhibiting Ps. aeruginosa and E. coli was shown in Plate 1. Bacillus licheniformis (S5) inhibits the (Staphylococcus aureus, Streptococcus pyogenes) and (Klebsiella pneumonia). Bacillus megaterium S1 was only active against (Pseudomonas aeruginosa), Bacillus pumilus S4 is only active against (Staphylococcus aureus, Streptococcus pyogenes), Bacillus subtilis G8 inhibits three of the test microorganisms namely (Streptococcus pyogenes) and (Escherichia coli and Klebsiella pneumonia) as shown in

Table 5. Bacillus subtilis G8 shows the most promise of the isolates by indicating zones of inhibition of 27, 17 and 19 on test microorganisms on *Streptococcus pyrogens*, *E. coli* and *K. pneumoniae*, respectfully. *B.* licheniformis also inhibited 3 test microorganisms with large zones of inhibition.

Discussion

The total *Bacillus* count of the soil samples revealed that although Bacillus species are present in all the sample soils, they may however, slightly differ from location to location. This might be due to the soil type and composition, and also environmental factors such as pH, temperature and moisture content, exposure to fire and exposure to flood (Oyeleke et al., 2008). Morphological and biochemical characteristics shows that the bacteria belong to Bacillus spp. as described by Davies and Williams (1999) as well as Collins et al. (2010). The isolates screened reveals that Bacillus species isolates with antibiotics properties are present in the soil samples screened. This is also in agreement with Bala (2012) who reported that Bacillus species are the predominant soil bacteria because of their resistant endospore formation and their ability to produce antibiotics of medical importance. The Bacillus species identified as Bacillus megaterium, Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis and Bacillus sphaericus being observed as predominant

of the Bacillus species in soil samples was also reported (Oyeleke et al., 2008; Bala, 2012). Bala et al. (2012) also reported that in a competitive environment, inhibition zones are developed by both organic acid producers and antibiotic producers. The organic acid producers are eliminated by growing them on Calcium Carbonate medium because they develop clear zones around them on Calcium Carbonate (CaCO₃) medium. Organic acids react with CaCO₃ and dissolved to Calcium Oxide (CaCO3) and Carbon dioxide (CO2). On CaCO3 medium only organic acid producers develop a clear zone. However, Chandrashekhara (2010) and Todar et al. (2005) demonstrated that Bacillus isolates with large zones of inhibition are not organic acid producers but antibiotic producers, hence Bacillus megaterium, Bacillus subtilis, Bacillus pumillus, Bacillus licheniformis, Bacillus sphaericus reported most likely produce substances with high antibiotic properties. Bacillus species isolated from OAUSTECH soil showed moderate inhibition against Gram-positive Streptococcus pyogenes and Staphylococcus aureus and Gram negative Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. This is in agreement with Todar et al. (2005) who reported the inhibition of Gram positive and Gram-negative bacteria by Bacillus species. The present study is a preliminary work with potential findings which could be elaborate in future to produce novel isolates antibiotics.

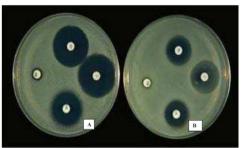


Plate 1: Antimicrobial effects of *Bacillus sphaericus* against two test organisms. A: *Pseudomonas aeruginosa*; B: *Escherichia coli*

Table 1: Total Bacillus population count in different soil samples from OAUSTECH campus

Sample location	Sample code	*Cfu/g
Stagnant water	S	3.4×10^6
Earthen pond	EP	3.1×10^{6}
Earthen pond 2	EQ	3.8×10^6
Bakery compost	BC	3.8×10^{6}
Garden	G	1.6×10^6
Poultry	P	8.6×10^{5}
Rhizopore zone	R	4.4×10^6
Farm	F	2.2×10^{6}
Nursery	N	1.9×10^{6}
Dumping site	DS	3.1×10^6

^{*} These values are the means of triplicate values

Table 2: Confirmation of identities of test microorganisms used for screening

Isolation code	Colony Morphology	Gram Stain	Indole	Coagulase	Catalase	Methyl red	Oxidase	Lactose	Probable bacteria
S1	Metallic green	-	-	-	+	-	+	-	Pseudomonas aeruginos
S2	Large circular smooth white colonies	-	+	ND	+	+		+	Escherichia coli
S3	Small yellow colonies glistening surface	+	+	+	+	+	-	+	Staphylococcus aureus
S4	Slimy white colonies	-	-	ND	+	-	-	+	Klebisella pneumonia
S5	Spherical in chain	+	-	+	-	+	-	+	Streptococcus pyogenes

Keys: + positive,

- negative,

ND - not determined

Table 3: Antimicrobial production pattern of different Bacillus isolates from soil

Antibiotic production categories	Antibiotic production range	Number of antibiotic producers	Average zone of inhibition	Percentage Antibiotic production
None	0	30	0	50
Slight	1-5	16	3.36	26.7
Average	5-15	9	12	15
Large	15-25	5	18.8	8.3
Total	0-25	60	4.26	100

^{*} These values are the means of triplicate values

Tables 4: Morphological characteristics and biochemical features of major antibiotic producing isolates with large inhibition zone

Isolation code	Colony Morphology	Gram Stain	Cell Shape	Spore Stain	Catalase	Motility	Oxidase	Indole	Glucose	Lactose	Probable bacteria
S1	Grey, Opaque, round shape,	+	Rod	+	+	+	-	-	A	-	Bacillus magaterium
S4	colony White, flat, undulate with irregular transparent colony									+	Bacillus pumilus
S5	White round, irregular, wrinkled colony	+	Rod	+	+	+	-	-	+	+	Bacillus licheniformi
G8	Grey, round, translucent colony	+	Rod	+	+	+	-	-	+	+	Bacillus subtilis
EP1	Yellow transparent partial with flat, undulate colony	+	Rod	+	+	+	-	-	+	+	Bacillus sphaericus

Key: + positive, - negative, A: acid production

Table 5: Zones of inhibition of the isolated antibiotic producing *Bacillus* isolates Test microorganisms (Zones of inhibition, mm)

Antibiotic Producing Isolates	Staphylococcus aureus	Streptococcus pyogenes	Pseudomonas aeruginosa	Escherichia coli	Klebsiella pneumoniae
Bacillus megaterium	0	0	20	0	0
Bacillus pumilus	15	16	0	0	0
Bacillus licheniformis	15	17	0	0	26
Bacillus subtilis	0	27	0	19	17
Bacillus sphaericus	0	0	16	0	0

Conclusion

The study revealed that, bacteria with the potential to produce antibiotics are present in OAUSTECH campus soil. Though a large list of antibiotics is commercially available, the search for the most effective one is still on, and this work may contribute in providing preliminary information on the antibiotic producing microorganisms especially in the light of the prevalence of the antibiotic multi resistance bacterial pathogen in health care.

Further work should be carried out on the isolates, while additional exploratory research could be made by checking other soil around OAUSTECH campus in Okitipupa for more novel antibiotic producing bacteria. In addition, the physiological study to establish the optimal condition for antibiotic production and its activity as well as purification and application can be further exploited in the future.

References

- Amin, A., Khan, M.A., Ehsanullah, M., Haroon, U., Muhammad, S., Azam, F. and Hameed, A. (2012). Production of peptide antibiotics by *Bacillus* sp. GU 057 indigenously isolated from saline soil. *Braz. J. Microbiol* 43 (4): 1340-1346.
- Bala, J.D., Abioye, O.P., Auta, H.S., Damisa, D., Kuta, F.A., Adabara, N.U. and Udenyi, E.O. (2012). Isolation and screening of soil bacteria with the potential to produce antibiotics. Res. Rev. BioSciences 6 (12): 361-364.
- Bhagabati, A., Dillar, T., Grisel, N., Sladic, G., Rsde, Z. and Mulec, M. (2004). The influence of *Bacillus subtilis* protein Degu, sin R and sin IR on biosynthesis in *Bacillus licheniformis*. *Biotechniske falk*. V.

- *iybijani, knetistro*, 200 Technics 72: 37-42.
- Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C. and Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of *Bacillus subtilis* group. *Front. Microbiol. Micro Biotechnol.* 26: 201-209.
- Collins, C.H., Lyne, P.M. and Grange, J.M. (1989). Collin and Lyne's Microbiological methods. 6th edn. UK: Butterworth and co. (Publishers) Ltd. Pp409
- Davies, C. and Williams, B. (1999). Genus Bacillus. Bergeys manual of systematic bacteriology. Second Edition, Vol. 3 (The Firmicules) P. De Vos, G.M. Garrity, D. Jones, N.R. Krieg, W. Ludwig, F.A. Rainey, K. Schleifer and W.B. Whitman (eds.) Springer, Baltimore, USA. pp21-1450.
- DeGomez, T., Kolb, P. and Kleinman, S. (2019). Basic soil components. h t t p s : / / c l i m a t e woodlands.extension.org/basic-soil-components/
- Drablos, F., Nicholson, D. and Ronning, M. (1999). EXAFS study of zinc coordination in Bacitracin A. Biochim. Biophys. Acta 1431: 433–442.
- Eltem, R. and Ucar, F. (1998). The determination of antimicrobial activity spectrums of 23 *Bacillus* strains isolated from Denizli-Acıgo"l (Bitter Lake) which is sodalake (Na2SO4). *J. Ku"kem*21 (1): 57–64.
- Galvez, A., Maqueda, M., Cordovilla, P., Martinez-Bueno, M., Lebbadi, M. and Valdivia, E. (1994). Characterization and biological activity against Naegleria fowleri of amonebicins produced by Bacillus licheniformis D-

- **13**. Antimicrob. Agents Chemother. 38 (6): 1314-1319.
- Jacoby, R., Peukert, M., Succurro, A., Koprivova, A. and Kopriva, S. (2017).

 The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions.

 Front plant Sci. 8: 1617.
- Morikawa, M., Ito, M. and Imanaka, T. (1992). Isolation of a new surfactin producer *Bacillus pumilus* A-1, and cloning and nucleotide sequence of the regulator gene, psf-1. *J. Ferment. Bioeng.* 74 (5): 255–261.
- Needelman, B.A. (2013). What are soils? *Nature Education Knowledge* 4 (3): 2
- Nester, R., J. Nester, and Shewood, N. (2009). Microbiology of human. McGraw-Hill, London.
- Oyeleke, S.B., Istifanus, N. and Manga, B.S. (2008). Isolation and screening of soil bacteria with the potential for antibiotics production. Intern. J. Integrative Biol. 3 (3), 19: 1-195.
- Perez, C., Suarez, C. and Castro, G.R. (1992). Production of antimicrobials by *Bacillus subtilis*. MIR 15. *J. Biotechnol*. 26: 331–336.
- Perez, C., Suarez, C. and Castro, G.R. (1993). Antimicrobial activity determined in strains of *Bacillus circulans* cluster. *Folia Microbiol*. 38 (1): 25–28.
- Peypoux, F., Bonmatin, J.M. and Wallach, J.

- (1999). Recent trends in the biochemistry of surfactant. *Appl. Microbiol. Biotechnol.* 51 (5): 553–563.
- Steller, S., Vollenbroich, D., Leenders, F., Stein, T., Conrad, B., Hofemeisterr, J., Jaques, P., Thonart, P. and Vater, J. (1999). Structural and functional organization of the fengycin synthease multi-enzyme system from *Bacillus* subtilis b213 and A1/3. *Chem. Biol.* 6 (1), 31–41.
- Tan, S.Y. and Tatsumura, Y. (2015).
 Alexander Fleming (1881-1955):
 Discovery of penicillin. Singaspore
 Med. J. 56 (7): 366-367.
- Tapia-Torres, Y., Rodriguez-Torres, M.B., Elser, J.J., Islas, A., Souza, V. and Garcia-Oliva, F. (2016). How to live with phosphorus scarcity in soil and sediment: lessons from bacteria. *Appl. Environ. Microbiol.* 82: 4652-4662.
- Todar, K., Ubukata, M. and Hamada, M. (2005). *Microbiology of Human Perspective*. Mc Graw Hill publisher, London.
- Waites, M.J; Morgan, N.L. Rockey J.S. and Higton, M. (2008). Industrial Microbiology an X-5, a novel cefotaxime -hydrolyzing betalactamases from an outbreak of Salmonella typhimurium in Lativia. Antimicrobial Agents and chemotherapy 42: 1980-1984.